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Abstract
The measurement of above-ground biomass is important to understand carbon flow between trees and the 

atmosphere; remote sensing plays an important role in making this possible for extensive and hard-to-reach areas. 
This study compared above-ground forest biomass estimation models using data from different sources, including 
Landsat ETM+, Aster GDEM, ALS (LiDAR) and forest inventories. Two sets of predictors were established: the 
first included variables extracted from Landsat ETM+ and Aster GDEM, while the second included variables from 
Landsat in combination with LiDAR products (Digital Terrain Model, Digital Surface Model and Canopy Height 
Model). The Random Forest algorithm was used to build all models; this method explicitly returns the importance 
of each predictor and therefore allows the selection of the best set of variables. Estimations were made separately 
by forest cover for Pinus radiata, Eucalyptus globulus and second-growth Nothofagus glauca. Better results were 
obtained using the combination Landsat-LiDAR than those using Landsat-Aster GDEM data. Also, the results were 
better when applying the model to pine cover (pseudo R2 77.22%).

Keywords: Above-ground biomass; Landsat ETM+; LiDAR; 
Random forest.

Introduction
The study of forests is a growing area of research due to their 

importance in different natural processes; the carbon cycle is one of the 
main processes. This is due to the fact that terrestrial ecosystems are 
the greatest contributors to the global carbon balance [1]; they contain 
close to 60% of the carbon stored in vegetation and 50% of that stored 
in the soil [2]. Carbon in forests may be divided into three components: 
biomass in living plants; plant remains and soil [3].

Most studies related to carbon content in forests are performed 
on the above-ground biomass, defined as the weight or equivalent 
estimation of organic material growing above the ground [4]; the 
different methods of estimating this content may be classified by the 
type of information they utilize.

The method most used to estimate above-ground forest biomass is 
that of forest inventories. These use allometric equations which relate 
easily-measured field data such as tree height and diameter at breast 
height (DBH) with above-ground biomass [5]. Although this is the 
most precise method it has greater cost, especially when it is desired 
to estimate biomass in extensive or hard-to-reach zones. Given the 
operational difficulties, methods have been developed which combine 
inventories with information acquired by remote sensing [6,7] and 
environmental variables (i.e. slope, exposition, altitude and ground 
curvature) [8].

Passive remote sensors use solar energy to obtain spectral 
information about objects. Among the most used are the medium-
resolution multispectral satellites Landsat ETM+ and Aster (30 and 15 
meters, respectively) [9]. The information provided by these sensors 
allows relating reflectance, vegetation indices and/or transformations 
of different spectral bands to above-ground biomass. One of the 
advantages of using these images is that some of them may be acquired 
free or at low cost. The same is true for the Digital Elevation Models 
(DEM), SRTM (“Shuttle Radar Topography Mission”) and Aster 
GDEM (Aster “Global Digital Elevation Model”), from which it is 
possible to derive topographic information to be correlated with above-
ground biomass [10,11].

LiDAR (“Light Detection and Ranging”) is an active remote sensor 
that obtains a cloud of points with X,Y, and Z coordinates which 
provide information about the structure of objects on the ground [12]. 
Measurements are obtained by estimating the distance between the 
sensor and its objective by the time between the emission and return of 
a laser pulse [13]. Data of this type have been used by various authors 
[14-16] to obtain metrics or high-resolution models related to forest 
heights. One of the models most used is that of Digital Surface Models 
(DSM), which represent the surface of the Earth including all objects 
on it, and the Canopy Height Model (CHM), which estimates the 
height of the trees. One of the main difficulties and disadvantages of 
this type of data, compared to multi-spectral images, is the high cost of 
acquiring and processing them.

There are two major types of statistical models, those which focus 
on the data and those which focus on algorithms [17]. The focus based 
on the data begins by assuming a stochastic model such as linear or 
logistic regression, whose fit is used both to predict responses (Y) to 
future data (X) and to extract information about the nature of the 
relation between variables X and Y. The approach based on algorithms 
focuses on prediction and uses estimations of its exactitude to validate 
the models, without considering the type of relation between the 
variables. The latter approach is generally called machine-learning 
models.

In the construction of statistical models for the estimation of above-
ground biomass both approaches have been used. Initially techniques 
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were employed such as multiple regression, k-NN classification and 
neural networks [18] on data from active and/or passive sensors. 
However, in recent years the use of machine-learning type algorithms 
based on classification and regression trees has increased. Among 
these, the Random Forest regression has been used to estimate forest 
parameters [10, 19-22], with better results than other methods.

About 22% of the surface area of continental Chile (16.6 million 
ha) is covered with native forests and forest plantations, concentrated 
mainly in the central part [23]. This makes the country an interesting 
place for biomass studies, to estimate the capacity for carbon storage, 
to implement management measures or to estimate the potential 
production of biofuel.

The objective of this study is to compare models of above-ground 
forest biomass estimation, combining satellite information obtained 
from the Landsat ETM+ sensor, Aster elevation data, information 
derived from LiDAR point clouds and field measurements.

Material and Methods
Test site

The study area is an experimental forest property of the Universidad 
de Chile named Pantanillos, located in central Chile (Figure 1), between 
coordinates UTM (WGS84) 744187 – 746042 meters east and 6074000 
– 6070800 meters north.

Pantanillos has a surface area of approximately 400 ha, the majority 
of which is covered with plantations of Pinus radiata D. Don and in 

lesser quantity of Eucalyptus globulus Labill. It also has sectors of 
second-growth native forest, in which hualo (Nothofagus glauca Phil. 
Krasser) is the predominant species.

Field reference data
Field data were compiled in February, 2011, by establishing a 

systematic net of conglomerates every 200 m. Each conglomerate was 
formed by five sampling subunits, one central and four at 30 m distance 
in each of the cardinal directions. Each subunit consisted of concentric 
circular plots of 2, 4 and 8 m radius, which included trees with DBH ≥ 
5, 10 and 20 cm, respectively (Figure 1). The following state variables 
were recorded in each plot: DBH (cm), species, total height (m), and 
other complementary descriptors. A total of 83 conglomerates were 
measured which encompass 330 plots (some plots were missing due to 
accessibility issues).

Estimation of the above-ground biomass with field data

The following allometric functions were used to estimate the above-
ground biomass of individual trees:

E. globulus [24]:

 92 2.3* ( )BA LN DBH=− +                 (1)

P. radiata [25]:

( )( )21.028* 1.9 * 4.892
 

LN DBH H
FBA e

 + −  =                     (2)

Other species [26]: 

Figure 1: Location of the Pantanillos forest in the Región del Maule (left).Cluster distribution of forest inventory (center). Internal conformation of each cluster (right).
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( )( )2.9149 1.9711* 0.7442* ( ) LN DBH LN HBA e − + +=                     (3)

BA is the total above-ground biomass (kg), BAF is stem biomass 
(kg), DBH (cm) and H is height (m).

For radiata pine BAF is the above-ground biomass of the stem 
with bark; thus it was necessary to add the above-ground biomass 
component of branches and needles (non-stem biomass). This was 
done using the component equations of Corvalán and Hernández [27] 
for the percentage of stem above-ground biomass (BF%) and that of the 
non-stem biomass (BNF%).

The final equation for the stem above-ground biomass (BF%) was:
0.78( 98/ )

%  51.71*   33XBF e −= +                  (4)

  * 1000 /  * X E N AB=                      (5)

Where X is the mean distance between trees, E is the age of the 
stand, AB is the basal area and N is the number of trees. Finally, BNF% 
was calculated as the complement of the stem biomass area, assuming 
a constant bark biomass of 10%.

% %1 00 ( 1 0%)BNF BF= − −                         (6)

Total above-ground biomass per hectare in each plot was calculated 
by summing the individual stem biomass of each tree multiplied by its 
respective expansion factor, plus the non-stem biomass expressed as 
an aggregate function of total stem biomass divided by total biomass.

Processing of satellite images

We obtained two Landsat ETM+ scenes from 8 December 2010 
and 9 January 2011 (Path/row 233/85). Both images were rectified 
by polynomial functions using the UTM projection (WGS84 zone 18 
south).

A radiometric correction was performed by conversion of Digital 
Number (DN) to radiance using the specific gain and offset of the 
sensor. We then applied an atmospheric correction using the method of 
Dark Object Subtraction proposed by Chávez [28], and a topographic 
correction using the method of Civco [29]. Reflectance was obtained 
by applying a simplified model with the correction parameters of 
Chuvieco [30]. Since the images were taken after 2003, that is, they 

contain the SLC-off error, both images were fused using the method 
of Scaramuzza et al. [31] (Figure 2). The reflectance bands were also 
used to obtain the Tasseled Cap transformation [32] and the vegetation 
indices shown in Table 1.

Processing of the aster elevation digital model

We obtained the free Aster GDEM Elevation Digital Model from 
the web site of the same name, with a spatial resolution of approximately 
30 meters. From this we obtained topographical variables of aspect (in 
azimuth degrees), slope (in percentage) and land curvature (concave, 
convex or flat).

Processing of LiDAR data

LiDAR data were obtained in March 2011 with a mean density of 
the point cloud of 5 points per m2, and a true three-band ortho image 
(visible RGB) with a spatial resolution of 0.5 m.

As a first step to obtain the Digital Terrain Model (DTM) from 
the LiDAR, we used the multi-scale curvature algorithm to identify the 
points at ground level [39]. The points not classified as ground were 
interpolated to obtain a Digital Surface Model (DSM) [40]. We also 
obtained a Canopy Height Model (CHM) as the difference between 
DTM and DSM, which shows the tree heights. The three models (DTM, 
DSM and CHM) were obtained at a spatial resolution of 1 m. As with 
the Aster GDEM, from the LiDAR DTM we obtained the topographic 
variables elevation, slope, aspect and land curvature.

Parceling

Parceling consisted in the identification of homogeneous units 
according to the dominant vegetation present. This was done by photo 
interpretation of the true ortho image complemented with field data. 
We identified 5 types of vegetation cover: P. radiata plantations, E. 
globulus plantations, second-growth native forests, mixtures of forest 
covers and a class called other, which included bare areas, buildings 
and areas outside the forest property.

Estimation of above-ground biomass

We used the method based on classification and regression 
trees called Random Forest (RF), available in the statistical software 
R-Project [41], under the name random forest package. This algorithm, 
proposed by Breiman [42], constructs a tree of classification or 

Figure 2: Correction of Landsat ETM+ SLC-off. a) Landsat ETM+SLC-off December/2010. b) Landsat ETM+SLC-off January/2011, c) Landsat ETM+ corrected.
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regression using a process called bagging (“Bootstrap + Aggregation”) 
[43,44]. In RF each node is separated using the best division chosen 
among a subset of randomly chosen predictor variables. This algorithm 
produces an internal error estimation, thus the results do not require 
cross-validation or independent validation [45].The error of estimation 
is calculated by leaving out of the bootstrap sample about one third 
of the reference cases not used in the construction of the tree. These 
data are so-called “out-of-bag” (OOB), and are predicted using the tree 
created by the bootstrap sample. On the average each datum is an OOB 
about 1/3 of the time; these predictions are averaged and the mean 
square error (MSE) is calculated [46].

RF provides a pseudo R2 similar to the R2 of a standard linear 
regression; it is called pseudo because it uses the values predicted by 
RF to calculate the MSE. Pseudo R2 may take negative values, which are 
interpreted as very poor fits [47]. RF also calculates the relevance of the 
predictor variables, assigning a score that depends on the changes in the 
error when the values of this variable are permuted (called %IncMSE); 
if the effect is larger the variable is assigned greater importance [48].

We estimated above-ground biomass for P. radiata, E. globulus and 
second-growth native forest separately. Since RF includes an element of 
randomness, each estimation was repeated 100 times. To evaluate the 
sources of information, the root mean square error (RMSE) (equation 
7) and percentage RMSE (equation) were calculated from the MSE 
returned by RF.

2¯
^

1

1
n

OOB
i

RMSE yi yi
n

=

 
 

= − 
 
 

∑                       (7)

1

% *100
1 n

ii

RMSERMSE
y

n =

=

∑
                         (8)

Where the yi are the observed data.

Variables were extracted based on a point cloud established every 

30 m, in which were also included the coordinates of each point and 
the point above-ground biomass calculated with field data when 
available. For the variables obtained with LiDAR data the extraction 
was performed based on an area of influence of 8 m radius based on the 
net of points, obtaining the mean value for the area. In the extraction of 
DCM and DSM the standard deviation was also estimated.

To compare the capacity of Landsat, Aster GDEM and LiDAR to 
estimate above-ground biomass, two sets of predictors which occupy 
combined sources of information were used (Table 2).

Results
With the Landsat + GDEM set using all the predictors the best fit 

was obtained in pine plantations, 56.02%. However, for eucalyptus 
and second-growth native forest the pseudo R2 were low, with values 
of -5.73% and 2.5%, respectively. The selection of variables improved 
the fit and decreased the error (Table 3).The estimations in P. radiata 
and second-growth hualo selected variables related to topography and 
the spectral response, while in E. globulus only three predictors derived 
from Landsat were selected (Figure 3a).

In estimations using Landsat and LiDAR the fit values increased 
for P. radiata (pseudo R2=75.72%) and second-growth hualo (pseudo 
R2=13.90%) compared to those obtained using Landsat + GDEM, while 
E. globulus continued with negative pseudo R2 (pseudo R2=-0.92%). 

Index Equation Reference

Difference Vegetation Index (DVI)  NIR RDVI ρ ρ= − Roujean and Breon [33]

Simple Ratio (SR) NIR

R
SR ρ

ρ
= Jordan [34]

Red Green Ratio (RGR) R

G
RGR ρ

ρ
= Gamon and Surfus [35]

Red Green Index (RGI)  
  

G R

G R
RGI ρ ρ

ρ ρ
−

=
+

Coops et al. [36]

Normalized Difference Vegetation Index (NDVI) NIR R

NIR R
NDVI

 
ρ − ρ

=
ρ + ρ

Rouse et al. [37]

Corrected Normalized Difference Vegetation Index (NDVIc) MIR MIR min
c

MIR max MIR min
NDVI NDVI 1

 ρ − ρ
= ν − ρ − ρ 

Nemani et al. [38]

NIRρ = Near Infrared, Rρ = Red, Gρ = Green, MIRρ = Middle Infrared.

Table 1: Vegetation Indices utilized in the study.

Landsat +GDEM Set Landsat+LiDAR Set 

Landsat:
   Reflectivity (TM1 - TM5 y TM7)
   Vegetation Index 
   Tasseled Cap (TC1-TC6)

Landsat:
   Reflectivity (TM1 - TM5 y TM7)
   Vegetation Index 
   Tasseled Cap (TC1-TC6)

GDEM:
   Elevation (E)
   Slope (S)
   Aspect (Asp)
   Curvature (C)

LiDAR:
   Elevation (Li_E)
   Slope (Li_S)
   Aspect (Li_Asp)
   Curvature (Li_C)
DSM (Li_DSM)
Standard deviation DSM (Li_DSM_sd)
CHM (Li_CHM)
Standard deviation CHM (Li_CHM_sd)

Table 2: Sets of predictors used in the estimation of aboveground biomass.
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PR EG NG

Landsat 
+

GDEM

Pseudo R2 60.26 (± 0.55) 37.84 (± 2.19) 7.76 (± 1.24)
RMSE 44.58 (± 0.31) 25.81 (± 0.83) 55.2 (± 0.37)

RMSE% 51.59 (± 0.32) 60.83 (± 1.95) 75.24 (± 0.51)

Landsat
+

LiDAR

Pseudo R2 77.22 (± 0.37) 37.92 (± 1.78) 30.95 (± 1.05)
RMSE 33.75 (± 0.27) 25.79 (± 0.37) 47.76 (± 0.37)

RMSE% 35.40 (± 0.28) 60.79 (± 0.87) 65.09 (± 0.50)

PR= Pinus radiata, EG= Eucalyptus globulus and NG= Nothofagus glauca.

Table 3: Fits and mean errors for estimations with selection of variables for the two proposed sets of predictors.

Figure 3: The graphs show the order of importance of the variables obtained in RF for the Landsat + GDEM and Landsat + LiDAR sets according to the dominant 
species. Red bars indicate the variables selected for the second estimation. PR= Pinus radiata, EG= Eucalyptus globulus and NG= Nothofagus glauca (native forest).
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With selection of variables the fit in P. radiata was improved using 
variables of Landsat and LiDAR. For E. globulus a fit of only 37.92% 
was achieved (similar to that of Landsat + GDEM with selection of 
predictors) in which the variables of canopy structure were not relevant, 
in contrast to the estimations in second-growth hualo, in which only 
this class of variables was selected (Figure 3b).

Discussion
The set of predictors which used variables from Landsat and 

GDEM produced poorer fits than the second set, which incorporated 
information related to canopy height extracted from the LiDAR 
point cloud. These results concur with those of Lefsky et al. [49], who 
indicated that the metrics of canopy structure, mainly height and 
its standard deviation are highly correlated with the above-ground 
biomass of forests. Latifi et al. [19] also found this relation using a 
genetic algorithm for variable selection, although they also used other 
predictors extracted directly from the point cloud such as height 
percentiles.

In the estimations of pine and eucalyptus plantations and a 
second-growth native forest, both the fits and the type of predictors 
selected were considerably different for the two sets of predictors. The 
differences in fit among the three vegetation types may be due both 
to their horizontal and vertical structures. In pine plantations the 
horizontal structure is more homogeneous than in areas with native 
forest, which have not only a more complex and irregular canopy 
geometry but are also less dense. Clark et al. [50] found that plantations 
had higher correlations with metrics from LiDAR than forests with 
irregular structure. Our results agree with those of Popescu et al. [51], 
who obtained fits of 0.33 for deciduous forests (RMSE 44 ton/ha) and 
0.82 for pine (RMSE 29 ton/ha), similar to our results.

Although eucalyptus plantations are homogeneous horizontally, 
the vertical structure of individual trees produced a large difference in 
the results. In pine plantations, the canopy structure allows a greater 
proportion of points to be intercepted in the canopy, which allows the 
creation of more precise models of the canopy surface, and thus also 
more precise DCM. On the contrary, in eucalyptus plantations trees are 
less leafy and canopies are sparser, thus many more points do not fall 
in the canopy of the trees but rather in the ground or the undergrowth, 
thus the DSM and DCM are less precise. LiDAR point clouds with 
higher densities may be suitable to compensate this problem but 
computing cost may also rise.

Conclusions
We conclude that the use of data which include information 

related to the canopy structure, such as the Digital Surface Models and 
Digital Canopy Models, produced better results (greater correlations) 
and lower errors. This was true in the estimations of pine and second- 
growth native forest but not for the estimations in E. globulus.

The differences in the fits of the estimations may be due to the 
precision obtained in the canopy models, given the vertical structure 
present in the different kinds of cover evaluated. In the estimations for 
E. globulus the utilization of LiDAR data did not improve the fit, which 
may indicate that the point density (5 points/m2) is not dense enough 
to represent correctly the tree canopies, sub-estimating the height of 
the stand.

This study estimated biomass using digital models related to 
canopy height, which estimates the mean height of the vegetation in 
each pixel. However, it is also possible to use other variables extracted 

directly from the LiDAR cloud points which may reveal the structure of 
other strata (such as understory); using these variables could improve 
the fits estimations.
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